
CS1660: Intro to Computer Systems Security
Spring 2025

Lecture 14: OS II
Co-Instructor: Nikos Triandopoulos

March 13, 2025

https://brown-csci1660.github.io

https://brown-csci1660.github.io/

CS1660: Announcements

u Course updates

u Project 2 is due today

u Homework 2 is now out and due Tuesday, March 18

u Where we are

u Part I: Crypto
u Part II: Web (with demos coming soon)
u Part III: OS
u Part IV: Network
u Part V: Extras

2

Today

u OS security

3

Source: XKCD

4/7/25Operating Systems Security

4

Discretionary Access Control (DAC)

• Users can protect what they own
– The owner may grant access to others
– The owner may define the type of access (read/write/execute) given

to others

• DAC is the standard model used in operating systems
• Mandatory Access Control (MAC)
– Multiple levels of security for users and documents (i.e. confidential,

restricted, secret, top secret)
– A user can create documents with just his level of security

4/7/25 Operating Systems Security5

General Principles
• Files and folders are managed by

the operating system
• Applications, including shells,

access files through an API

• Access control entry (ACE)
– Allow/deny a certain type of access to

a file/folder by user/group

• Access control list (ACL)
– Collection of ACEs for a file/folder

• A file handle provides an opaque
identifier for a file/folder

• File operations
– Open file: returns file handle
– Read/write/execute file
– Close file: invalidates file handle

• Hierarchical file organization
– Tree (Windows)
– DAG (Linux)

4/7/25 Operating Systems Security6

Access Control Entries and Lists
• An Access Control List (ACL) for a resource (e.g., a file or folder) is a

sorted list of zero or more Access Control Entries (ACEs)
• An ACE refers specifies that a certain set of accesses (e.g., read,

execute and write) to the resources is allowed or denied for a user or
group

• Examples of ACEs for folder “Bob’s CS166 Grades”
– Bob; Read; Allow
– TAs; Read; Allow
– TWD; Read, Write; Allow
– Bob; Write; Deny
– TAs; Write; Allow

4/7/25 Operating Systems Security 7

Closed vs. Open Policy
 Closed policy
– Also called “default secure”

• Give Tom read access to “foo”
• Give Bob r/w access to “bar
• Tom: I would like to read “foo”
– Access allowed

• Tom: I would like to read “bar”
– Access denied

Open Policy

• Deny Tom read access to “foo”
• Deny Bob r/w access to “bar”
• Tom: I would like to read “foo”
– Access denied

• Tom: I would like to read “bar”
– Access allowed

4/7/25 Operating Systems Security8

Question (1)
An ACL with no entries on a file?

4/7/25 9Operating Systems Security

A. Access Allowed to all with Open Policy
Access Allowed to all with Closed Policy

B. Access Denied to all with Open Policy
Access Allowed to all with Closed Policy

C. Access Allowed to all with Open Policy
Access Denied to all with Closed Policy

D. Access Denied to all Open Policy
Access Denied to all Closed Policy

E. It is not possible to realize

Question (1) - Answer
An ACL with no entries on a file?

4/7/25 10Operating Systems Security

A. Access Allowed to all with Open Policy
Access Allowed to all with Closed Policy

B. Access Denied to all with Open Policy
Access Allowed to all with Closed Policy

C. Access Allowed to all with Open Policy
Access Denied to all with Closed Policy

D. Access Denied to all Open Policy
Access Denied to all Closed Policy

E. It is not possible to realize

Closed Policy with Negative
Authorizations and Deny Priority

• Give Tom r/w access to “bar”
• Deny Tom write access to “bar”
• Tom: I would like to read “bar”

– Access allowed
• Tom: I would like to write “bar”

– Access denied
• Policy is used by Windows to manage access control to

the file system

4/7/25 Operating Systems Security11

Role-Based Access Control
• Within an organization roles are created for various job

functions
• The permissions to perform certain operations are assigned

to specific roles
• Users are assigned particular role, with which they acquire

the computer authorizations
• Users are not assigned permissions

directly, but only acquire them
through their role

12
U.S. Navy image in the public domain.

4/7/25 Operating Systems Security

Access Control: File System

4/7/25 Operating Systems Security 13

Linux vs. Windows
• Linux
– Allow-only ACEs
– Access to file depends on ACL of file

and of all its ancestor folders
– Start at root of file system
– Traverse path of folders
– Each folder must have execute (cd)

permission
– Different paths to same file not

equivalent
– File’s ACL must allow requested access

• Windows
– Allow and deny ACEs
– By default, deny ACEs precede allow

ones
– Access to file depends only on file’s

ACL
– ACLs of ancestors ignored when access

is requested
– Permissions set on a folder usually

propagated to descendants
(inheritance)

– System keeps track of inherited ACE’s
4/7/25 Operating Systems Security14

Linux File Access Control
• File Access Control for:
– Files
– Directories
– Therefore…
• \dev\ : devices
• \mnt\ : mounted file systems
• What else? Sockets, pipes, symbolic links…

4/7/25 Operating Systems Security15

Unix Permissions
• Standard for all UNIXes
• Every file is owned by a user and has an associated

group
• Permissions often displayed in compact 10-character

notation
• To see permissions, use ls –l

jk@sphere:~/test$ ls –l
total 0
-rw-r----- 1 jk ugrad 0 2005-10-13 07:18 file1
-rwxrwxrwx 1 jk ugrad 0 2005-10-13 07:18 file2
4/7/25 Operating Systems Security16

Unix File Types and Basic Permissions

d r w x r w x r w x

user group other

4/7/25 Operating Systems Security 17

file type

Permissions Examples (Regular Files)

4/7/25 Operating Systems Security 18

read/write/execute to everyone-rwxrwxrwx
read-only to everyone, including owner-r--r--r--

read/write/execute for owner, forbidden to
everyone else

-rwx------

read/write for owner, read-only for group,
forbidden to others

-rw-r-----

read/write for owner, read-only for everyone
else

-rw-r—r--

Permissions for Directories
• Permissions bits interpreted differently for directories
• Read bit allows listing names of files in directory, but not their

properties like size and permissions
• Write bit allows creating and deleting files within the directory
• Execute bit allows entering the directory and getting properties

of files in the directory
• Lines for directories in ls –l output begin with d, as below:
jk@sphere:~/test$ ls –l

Total 4
drwxr-xr-x 2 jk ugrad 4096 2005-10-13 07:37 dir1
-rw-r--r-- 1 jk ugrad 0 2005-10-13 07:18 file1
4/7/25 Operating Systems Security19

Permissions Examples (Directories)

4/7/25 Operating Systems Security 20

full access to everyone-rwxrwxrwx

full access to owner, group can access known
filenames in directory, forbidden to others

drwx--x---

full access to owner and group, forbidden to
others

drwxrwx---

all can enter and list the directory, only owner
can add/delete files

drwxr-xr-x

Octal Notation
• Standard syntax is nice for simple cases, but bad for

complex changes
– Alternative is octal notation, i.e., three or four digits from 0 to 7

• Digits from left (most significant) to right(least
significant):
 [special bits][user bits][group bits][other bits]

• Special bit digit =
 (4 if setuid) + (2 if setgid) + (1 if sticky)

• All other digits =
 (4 if readable) + (2 if writable) + (1 if executable)

4/7/25 Operating Systems Security21

Octal Notation Examples

4/7/25 Operating Systems Security 22

read/write/execute to everyone (dangerous!)777 or 0777
same as 777, plus sticky bit1777

same as 775, plus setgid (useful for directories)2775

read/write for owner, read-only for group,
forbidden to others640 or 0640

read/write/execute for owner and group,
read/execute for others775 or 0775

read/write for owner, read-only for everyone else644 or 0644

Becoming Root
• su
– Changes home directory, PATH, and shell to that of root, but doesn’t touch

most of environment and doesn’t run login scripts

• sudo <command>
– Run just one command as root

• su [-] <user>
– Become another non-root user

– Root does not require to enter password

4/7/25 Operating Systems Security23

Changing Permissions
• Permissions are changed with chmod or through a GUI like

Konqueror
• Only the file owner or root can change permissions
• If a user owns a file, the user can use chgrp to set its group to

any group of which the user is a member
• root can change file ownership with chown (and can optionally

change group in the same command)
• chown, chmod, and chgrp can take the -R option to recur

through subdirectories
4/7/25 Operating Systems Security24

Examples of Changing Permissions

4/7/25 Operating Systems Security 25

Sets the setuid bit on file1. (Doesn’t change
execute bit.)

chmod u+s file1

Sets file1’s group to testgrp, if the user is a
member of that group

chgrp testgrp file1

Adds group read/write permission to dir1 and
everything within it, and group execute permission on
files or directories where someone has execute
permission

chmod -R g=rwX dir1

Adds group write permission to file1 and file2,
denying all access to others

chmod g+w,o-rwx file1 file2

Changes ownership of dir1 and everything
within it to root

chown -R root dir1

Question (2)

Select the correct symbolic notation for a directory whose user
class has full permissions, group class has read and execute
permissions, and others class has only read permissions.

4/7/25 26Operating Systems Security

A. -rwxr-xr--

B. lr-xr-xr--

C. drwxr--r--

D. drwxr-xr--

Question (2) - Answer

Select the correct symbolic notation for a directory whose user
class has full permissions, group class has read and execute
permissions, and others class has only read permissions.

4/7/25 27Operating Systems Security

A. -rwxr-xr--

B. lr-xr-xr--

C. drwxr--r--

D. drwxr-xr--

The /tmp Directory

• In Unix systems, directory /tmp is
– Readable by any user
– Writable by any user
– Usually wiped on reboot

• Convenience
– Place for temporary files used by applications
– Files in /tmp are not subject to the user’s space quota

• What could go wrong?
– Sharing of resources may lead to vulnerabilities

4/7/25 28Operating Systems Security

Special Permission Bits

• Three other permission bits exist
– Set-user-ID (“suid” or “setuid”) bit
– Set-group-ID (“sgid” or “setgid”) bit
– Sticky bit

4/7/25 File Permissions29

Set-user-ID

• Set-user-ID (“suid” or “setuid”) bit
– On executable files, causes the program to run as file owner

regardless of who runs it
– Ignored for everything else
– In 10-character display, replaces the 4th character (x or -) with s

(or S if not also executable)
-rwsr-xr-x: setuid, executable by all
-rwxr-xr-x: executable by all, but not setuid
-rwSr--r--: setuid, but not executable - not useful

4/7/25 File Permissions30

Setuid Programs

4/7/25 Operating Systems Security 31

• Unix processes have two user IDs:
– real user ID: user launching the process
– effective user ID: user whose privileges are granted to the process

• An executable file can have the set-user-ID property (setuid)
enabled

• If a user A executes setuid file owned by B, then the
effective user ID of the process is B and not A

Setuid Programs

4/7/25 Operating Systems Security 32

• System call setuid(uid) allows a process to change its
effective user ID to uid

• Some programs that access system resources are owned by
root and have the setuid bit set (setuid programs)
– e.g., passwd and su

• Writing secure setuid programs is tricky because
vulnerabilities may be exploited by malicious user actions

Set-group-ID
• Set-group-ID (“sgid” or “setgid”) bit
– On executable files, causes the program to run with the file’s group, regardless

of whether the user who runs it is in that group
– On directories, causes files created within the directory to have the same group

as the directory, useful for directories shared by multiple users with different
default groups

– Ignored for everything else
– In 10-character display, replaces 7th character (x or -) with s (or S if not also

executable)
-rwxr-sr-x: setgid file, executable by all
drwxrwsr-x: setgid directory; files within will have group of directory
-rw-r-Sr--: setgid file, but not executable - not useful

4/7/25 File Permissions33

Sticky Bit

• On directories, prevents users from deleting or renaming files they
do not own

• Ignored for everything else
• In 10-character display, replaces 10th character (x or -) with t (or T if

not also executable)

drwxrwxrwt: sticky bit set, full access for everyone
drwxrwx--T: sticky bit set, full access by user/group
drwxr--r-T: sticky, full owner access, others can read (useless)

4/7/25 File Permissions34

Symbolic Link

• In Unix, a symbolic link (aka symlink) is a file that points to
(stores the path of) another file

• A process accessing a symbolic link is transparently redirected
to accessing the destination of the symbolic link

• Symbolic links can be chained, but not to form a cycle

• ln -s really_long_directory/even_longer_file_name myfile

4/7/25 35Operating Systems Security

Root

• “root” account is a super-user account, like
Administrator on Windows

• Multiple roots possible

• File permissions do not restrict root

• This is dangerous, but necessary, and OK with good
practices

4/7/25 Operating Systems Security36

Becoming Root
• su
– Changes home directory, PATH, and shell to that of root, but doesn’t touch

most of environment and doesn’t run login scripts

• sudo <command>
– Run just one command as root

• su [-] <user>
– Become another non-root user

– Root does not require to enter password

4/7/25 Operating Systems Security37

Limitations of Unix Permissions
• Unix permissions are not perfect

– Groups are restrictive
– Limitations on file creation

• Linux optionally uses POSIX ACLs
– Builds on top of traditional Unix permissions
– Several users and groups can be named in ACLs, each with

different permissions
– Allows for finer-grained access control

• Each ACL is of the form type:[name]:rwx
– Setuid, setgid, and sticky bits are outside the ACL system

4/7/25 Operating Systems Security38

Gone for Ten Seconds

4/7/25 Operating Systems Security 43

• You leave your desk for 10
seconds without locking your
machine

• The attacker sits at your desk
and types:
% cp /bin/sh /tmp
% chmod 4777 /tmp/sh

• The first command makes a
copy of shell sh

• The second command makes
sh a setuid program

• What happens next?
• The attacker can run the

copy of the shell with your
privileges

• For example:
– Can read your files
– Can change your files

Historical setuid Unix Vulnerabilities: lpr

4/7/25 Operating Systems Security 44

• Command lpr
– running as root setuid
– copied file to print, or symbolic

link to it, to spool file named with
3-digit job number (e.g.,
print954.spool) in /tmp

– Did not check if file already existed
– Random sequence was predictable

and repeated after 1,000 times

• How can we exploit this?

• Attack
– A dangerous combination: setuid,

/tmp, symlinks, …
– Create new password file

newpasswd
– Print a very large file
– lpr –s /etc/passwd
– Print a small file 999 times
– lpr newpasswd
– The password file is overwritten

with newpasswd

Beyond Setuid and Files

4/7/25 Operating Systems Security 45

• Writing setuid programs is tricky
– Easy to inadvertently create

security vulnerabilities
– Unix variants have subtle different

behaviors in setuid-related calls
• Access control to files is tricky
– A user file can be accessed by any

user process
– Shared folders and predictable file

names create security
vulnerabilities

• Consider alternatives
– Manage system resources via

services
– Use databases instead of files

and shared folders
– Use RPCs (including database

queries) to request access to
system resources

What We Have Learned

• What is an operating system
• Processes, users, services
• Access control models (DAC and RBAC)
• Setuid programs
• Dangers of symlinks, setuid, and shared directories
– A demo if you are “Gone for Ten Seconds”

4/7/25 46Operating Systems Security

Operating Systems Security II

CS 1660: Introduction to Computer Systems
Security

Unix File Types RWX and octal notation

d r w x r w x r w x

owner group other

48file type

4 2 1Octal
Notation

+ + 7=

setuid/setgid

Special permissions bits:
• setuid (Set User ID): executable runs with privileges of owner,

regardless of who runs it
• setuid (Set Group ID): executable runs with privileges of

group, regardless of who runs it

49

setuid/setgid

Special permissions bits:
• setuid (Set User ID): executable runs with privileges of owner,

regardless of who runs it
• setuid (Set Group ID): executable runs with privileges of

group, regardless of who runs it

50

Unprivileged user can run program with higher privileges!
=> Powerful, but very dangerous

setuid/gid: The effects

51

Disclaimer

setuid/setgid is dangerous. Using it incorrectly can cause serious
problems.

Just as you should never implement your own crypto,
you should not write your own setuid/setgid programs.

You are about to see why.

52

Background: environment variables
System variables that control how processes execute
Set up when a user logs in, as part of shell

53

Get variables
cs1660-user@6010f6e96b02:~$ echo $TERM
xterm
cs1660-user@6010f6e96b02:~$ echo $PWD
/home/cs1660-user

Set a variable
cs1660-user@6010f6e96b02:~$ export SOMETHING=hello
cs1660-user@6010f6e96b02:~$ echo $SOMETHING
Hello

Show the environment
cs1660-user@6010f6e96b02:~$ env
. . .

Background: environment variables
System variables that control how processes execute
Set up when a user logs in, as part of shell

54

Get variables
cs1660-user@6010f6e96b02:~$ echo $TERM
xterm
cs1660-user@6010f6e96b02:~$ echo $PWD
/home/cs1660-user

Set a variable
cs1660-user@6010f6e96b02:~$ export SOMETHING=hello
cs1660-user@6010f6e96b02:~$ echo $SOMETHING
Hello

Show the environment
cs1660-user@6010f6e96b02:~$ env
. . .

Scope is per-shell: log out/open new term => different vars

Background: $PATH
Where the shell looks when you run programs
=> List separated by “:”, traversed in order

55

Get variables
cs1660-user@6010f6e96b02:~$ echo $PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/local/go/bin

which: $PATH lookup
cs1660-user@6010f6e96b02:~$ which ls
/usr/bin/ls

cs1660-user@6010f6e96b02:~$ which go
/usr/local/go/bin/go

